$\qquad$

# C.U.SHAH UNIVERSITY <br> Winter Examination-2015 

## Subject Name : Problem Solving-I

Subject Code : 5SC03PAE1

Branch : M. Sc. (Mathematics)

Semester: 3 Date : 5/12/2015 Time : 2:30 To 5:30 Marks : 70

## Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

## SECTION - I

## Q-1

Q-2

## Attempt all questions

a) The linear operation $L[X]$ is defined by the cross product $L[X]=b \times X$, where $b=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$ and $X=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ are three dimensional vectors. If the $3 \times 3$ matrix $M$ of this equation satisfies $L[X]=M\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ then find the eigen values of $M$.
b) Find the bilinear transformation, which maps the points $z_{1}=2, Z_{2}=i$ and $z_{3}=-2$ into the points $w_{1}=1, w_{2}=i$ and $w_{3}=-1$ respectively.
c) Find the rank of following $(n+1) \times(n+1)$ matrix, where $a \in R$

$$
\left[\begin{array}{cccc}
1 & a & \ldots & a^{n} \\
1 & a & \ldots & a^{n} \\
\vdots & \vdots & \vdots & \vdots \\
1 & a & \ldots & a^{n}
\end{array}\right] .
$$

Q-3 a) Find and graph the strip $1<x<2$ under the mapping $w=\frac{1}{z}$.
b) Evaluate: $\int_{0}^{2+i} z^{2} d z$ along the line $y=\frac{x}{2}$.
c)

Let $\xi$ be a primitive fifth root of unity. Define $A=\left(\begin{array}{ccccc}\xi^{-1} & 0 & 0 & 0 & 0 \\ 0 & \xi & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \xi & 0 \\ 0 & 0 & 0 & 0 & \xi^{2}\end{array}\right)$. For a
vector $V=\left(v_{1}, v_{2}, v_{3}\right) \in R^{3}$ define $|v|_{A}=\sqrt{\mid V A V^{T}}$, where $V^{T}$ is a transpose of $v$. If $W=(1,-1,1,1,-1)$ then find the value of $|W|_{A}$.

## SECTION - II

## Q-4 Attempt the Following questions

a. Define: singular solution.
b. Find the pole of $f(z)=\frac{z-2}{z^{2}}$.
c. Define: isolated singularity.
d. Show that $f(z)=\int_{C} \frac{z-3}{z^{2}-2 z+5} d z$, where $C:|z|=1$ is analytic everywhere within $C$.
e. Find the dimension of the subspace $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) / 3 x_{1}-x_{2}+x_{3}=0\right\}$ of $R^{5}$.
f. If $M$ is a $7 \times 5$ matrix of rank 3 and $N$ is a $5 \times 7$ matrix of rank 5 , then find the $\operatorname{rank}(M N)$.

g. If $A$ is $3 \times 3$ complex Hermitian matrix, which is unitary. Give the distinct eigen values of $A$.

Q-5
a) Show that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}}, a^{2}<1 \tag{7}
\end{equation*}
$$

b) Find the $3 \times 3$ matrix whose eigen values are $1,2,3$ and corresponding eigen vectors are $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
b) By using variation of parameters method, solve: $y+y=\sec x$.
c) Let $A, B$ and $C$ be real $n \times n$ matrices such that $A B+B^{2}=C$ and if $C$ is nonsingular then show that $A+B$ and $B$ are non-singular.
a) Determine all possible Jordan canonical forms for a linear operator $T: V \rightarrow V$, whose characteristic polynomial is $\Delta(t)=(t-2)^{3}(t-5)^{2}$.
b) If $u=e^{x}(x \cos y-y \sin y)$, then find the analytic function $f(z)=u+i v$.
c) If $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$ is an $n$-tuple of non-zero vectors. Find the rank of $n \times n$ matrix $V=X . X^{T}$.
a) If $f(z)$ is an analytic function in a domain $D$ and $|f(z)|$ is constant in $D$ then show that $f(z)$ is constant in $D$.
b) By using variation of parameters method, solve: $y^{\prime \prime}+y=\sec x$.

Attempt all questions

## OR

Q-6
Attempt all Questions
a) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region
(i) $|z|<1$, (ii) $1<|z|<2$, (iii) $|z|>2$.
b) Show that the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3  \tag{7}\\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

is diagonalizable.


