C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Problem Solving-I

Subject Code : 5SC03PAE1

Branch : M. Sc. (Mathematics)

Time: 2:30 To 5:30 Semester : 3 Date : 5 / 12 / 2015 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions Q-1

- Check whether $u(x, y) = \sinh x \cos y$ is harmonic function or not. a.
- **b.** Find the fixed points of bilinear transformation $w = \frac{z}{2-z}$.
- c. Show that f(z) = xy + iy is not an analytic function.
- **d.** Solve: $D^2y + y = 0$.

- Show that the matrix $A = \begin{bmatrix} 0 & 100 & -100 \\ 0 & -2 & 100 \\ 0 & 0 & -100 \end{bmatrix}$ is negative semi-definite. e.
- f. Show that if A is an idempotent matrix and A + B = I, then B is idempotent and AB = BA = 0.
- **g.** Check whether $W = \{(x, y, z) | x, y, z \in Q\}$ is a subspace of \mathbb{R}^3 or not.

Attempt all questions

Q-2

a) The linear operation L[X] is defined by the cross product $L[X] = b \times X$, where $b = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ and $X = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ are three dimensional vectors. If the 3 × 3 matrix *M* of this equation satisfies $L[X] = M \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$ then find the eigen [6]

values of *M*.

- **b**) Find the bilinear transformation, which maps the points $z_1 = 2, Z_2 = i$ and [6] $z_3 = -2$ into the points $w_1 = 1$, $w_2 = i$ and $w_3 = -1$ respectively.
- c) Find the rank of following $(n + 1) \times (n + 1)$ matrix, where $a \in R$ [2]

Page 1 || 3

(07)

(14)

	$\begin{bmatrix} 1 & a & \dots & a^n \\ 1 & a & \dots & a^n \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$	
	$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ 1 & a & \dots & a^n \end{bmatrix}$	
	OR	
Q-2	Attempt all questions	(14)
â	Show that the relation $w = \frac{5-42}{4z-2}$ transforms the circle $ z = 1$ into a circle of radius unity in the W -plane and find the centre of this circle.	[6]
ł) Show that the system of equations $x - y + 3z = 4$, $x + z = 2$, $x + y - z = 0$ has infinitely many solutions.	[6]
() Show that the eigen value of a skew-Hermitian matrix is either zero or a purely	[2]
0.2	imaginary number.	(1.4)
Q-3	Attempt all questions) Show that for the matrix	(14)
•	[1 2014 2015]	
	$A = \begin{bmatrix} 0 & -1 & 2014 \end{bmatrix}$	[6]
	10 0 1 J	
l) Find the eigen values and eigen functions of the Strum-Liouville problem,	10
	$y'' + \lambda y = 0; y(0) = 0, y'(1) = 0.$	[6]
(Solve: $\frac{dy}{dx} - x \tan(y - x) = 1.$	[2]
	OR	
0-3) Find and example the strip $1 < \alpha < 2$ under the manning $u = \frac{1}{2}$	[6]
χ υ ι	Find and graph the strip $1 < x < 2$ under the mapping $w = \frac{1}{z}$.	[0]
I	⁹ Evaluate: $\int_0^{2\pi} z^2 dz$ along the line $y = \frac{x}{2}$.	[6]
(Let ξ be a primitive fifth root of unity. Define $A = \begin{pmatrix} \xi^{-1} & 0 & 0 & 0 & 0 \\ 0 & \xi & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \xi & 0 \\ 0 & 0 & 0 & 0 & \xi^2 \end{pmatrix}$. For a	[2]
	vector $V = (v_1, v_2, v_3) \in \mathbb{R}^3$ define $ v _A = \sqrt{ VAV^T }$, where V^T is a transpose of	
	v . If $W = (1, -1, 1, 1, -1)$ then find the value of $ W _A$. SECTION – II	
Q-4	Attempt the Following questions	(07)
-	Define: singular solution.	
l	• Find the pole of $f(z) = \frac{z-2}{z^2}$.	
(• Define: isolated singularity.	
(• Show that $f(z) = \int_C \frac{z-3}{z^2-2z+5} dz$, where $C: z = 1$ is analytic everywhere within	
f	C. Find the dimension of the subspace $W = \{(x_1, x_2, x_3, x_4, x_5)/3x_1 - x_2 + x_3 = 0\}$	
	of R^5 .	
f	If <i>M</i> is a 7×5 matrix of rank 3 and <i>N</i> is a 5×7 matrix of rank 5, then find the rank(<i>MN</i>).	

Page 2 || 3

g. If A is 3×3 complex Hermitian matrix, which is unitary. Give the distinct eigen values of A.

Q-5 Attempt all questions (14) mine all possible Iordan canonical forms for a linear operator $T: V \rightarrow V$ 9)

whose characteristic polynomial is
$$\Delta(t) = (t-2)^3(t-5)^2$$
. [6]

- **b**) If $u = e^x (x \cos y y \sin y)$, then find the analytic function f(z) = u + iv. [6]
- c) If $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$ is an *n*-tuple of non-zero vectors. Find the rank of [2] $n \times n$ matrix $V = X \cdot X^T$.

OR

- a) If f(z) is an analytic function in a domain D and |f(z)| is constant in D then Q-5 [6] show that f(z) is constant in D.
 - **b**) By using variation of parameters method, solve: $y'' + y = \sec x$. [6]
 - c) Let A, B and C be real $n \times n$ matrices such that $AB + B^2 = C$ and if C is non-[2] singular then show that A + B and B are non-singular.

Q-6 Attempt all questions

a) Show that

Q-6

$$\int_{0}^{2\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^2} d\theta = \frac{2\pi a^2}{1 - a^2}, a^2 < 1.$$
 [7]

(14)

b) Find the 3×3 matrix whose eigen values are 1, 2, 3 and corresponding eigen [1] [0] [1] v

rectors are
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
. (7)

- UΚ
- **Attempt all Questions** a) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region [7] (*i*) |z| < 1, (*ii*) 1 < |z| < 2, (*iii*) |z| > 2. **b**) Show that the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$
[7]

is diagonalizable.

